Visualization for Classification Problems, with Examples Using Support Vector Machines
نویسندگان
چکیده
In the simplest form support vector machines (SVM) define a separating hyperplane between classes generated from a subset of cases, called support vectors. The support vectors “mark” the boundary between two classes. The result is an interpretable classifier, where the importance of the variables to the classification, is identified by the coefficients of the variables defining the hyperplane. This paper describes visual methods that can be used with classifiers to understand cluster structure in data. The study leads to suggestions for adaptations to the SVM algorithm and ways for other classifiers to borrow from the SVM approach to improve the result. The end result for any data problem is a classification rule that is easy to understand with similar accuracy.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملA comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater
The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...
متن کاملVisualization and Interpretation of SVM Classifiers
Many machine learning applications involve modeling sparse high dimensional data. Examples include genomics, brain imaging, time series prediction etc. A common problem in such studies is the understanding of complex data-analytic models, especially nonlinear highdimensional models such as Support Vector Machines (SVM). This paper provides a brief survey of the current techniques for the visual...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002